A Novel Machine Learning-based Diagnostic Algorithm for Detection of Onychomycosis through Nail Appearance

Author:

DÜZAYAK Serkan1ORCID,UÇAR Muhammed Kürşad2ORCID

Affiliation:

1. ADIYAMAN ÜNİVERSİTESİ

2. SAKARYA UNIVERSITY

Abstract

Onychomycosis is the most common nail fungus disease in clinical practice worldwide, caused by the localization of various fungal agents, including dermatophytes, on the nail. The tests traditionally used for diagnosing onychomycosis are native examination, histopathological examination with periodic acid Schiff (PAS) staining, and nail culture. There is no gold standard method for diagnosing the disease, and the diagnosis process is time-consuming, costly, and quite laborious. Today, new technologies are needed to detect onychomycosis via AI-based ML to reduce the clinician and laboratory-induced error rate and increase diagnostic sensitivity and reliability. The present study aimed to design a decision support system to help the specialist doctor detect toenail fungus with artificial intelligence-based image processing techniques. The toenail images were taken by any camera initially from the individuals referred to the clinic. The image is divided into 12 RGB channels. Three hundred features were removed from each channel as 25 in the time domain. The best features were selected through feature selection algorithms in the next step to increase the performance and reduce the number of features, and models were created by algorithm classification. The average performance values of all proposed models, accuracy, sensitivity, and specificity, are 89.65, 0.9, and 0.89, respectively. The performance values of the most successful model-created accuracy, sensitivity, and specificity are 97.25, 0.96, and 0.98, respectively. Although the proposed method, according to the findings obtained in the study, has many advantages compared to the literature, it can be used as a decision support system for clinician diagnosis.

Publisher

Sakarya University Journal of Science

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3