Improvement of Fish Growth and Metabolism by Oligosaccharide Prebiotic Supplement

Author:

Xu Wei1ORCID,Lutz Charles Greg2,Taylor Christopher M.3,Ortega Miriam Contin2

Affiliation:

1. Department of Life Sciences, College of Science and Engineering, Texas A&M University Corpus Christi, Corpus Christi, Texas, USA

2. Agricultural Center, Louisiana State University, Baton Rouge, Louisiana, USA

3. Department of Microbiology, Immunology & Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA

Abstract

Finfish aquaculture is expected to continue to benefit from significantly improved fish diets, which are the source of energy to support the growth and health of fish. Strategies to enhance the transformation rate of dietary energy and protein to fish growth are greatly desired by fish culturists. Prebiotic compounds can be used as supplements to human, animal, and fish diets to populate beneficial bacteria in the gut. The goal of the present study is to identify low-cost prebiotic compounds with high efficacy in increasing the absorption of food nutrients by fish. Several oligosaccharides were evaluated as prebiotics in Nile tilapia (Oreochromis niloticus), one of the most widely cultured species in the world. Several parameters of the fish on different diets were evaluated, including feed conversion ratios (FCRs), enzymatic activities, expression of growth-related genes, and the gut microbiome. Two age groups of fish (30 days old and 90 days old) were used in this study. The results indicated that the addition of xylooligosaccharide (XOS), galactooligosaccharide (GOS), or XOS and GOS combination to the basic fish diet significantly decreased the feed conversion ratio (FCR) of the fish in both age groups. Both XOS and GOS decreased the FCR of 30-day-old fish by 34.4% compared to the fish on the control diet. In the 90-day-old fish group, XOS and GOS decreased the FCR by 11.9%, while the combination of the two prebiotics led to a 20.2% decrease in FCR compared to the control group. The application of XOS and GOS also elevated the production of glutathione-related enzymes and the enzymatic activity of glutathione peroxidase (GPX), indicating the enhancement of antioxidation processes in fish. These improvements were associated with significant changes in the fish gut microbiota. The abundance of Clostridium ruminantium, Brevinema andersonii, Shewanella amazonensis, Reyranella massiliensis, and Chitinilyticum aquatile were upregulated by XOS and GOS supplements. The findings of the present study suggested that the prebiotics would be more effective when they were applied to the younger fish, and the application of multiple oligosaccharide prebiotic compounds could result in a greater growth enhancement. The identified bacteria can be potentially used as probiotic supplements in the future to improve fish growth and feeding efficiency and ultimately reduce the cost of tilapia aquaculture.

Funder

LSU College of Science

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3