Efficacy of Palm Oil Application in Tiger Puffer Diets: Growth, Body Composition, Muscle Texture, and Lipid Metabolism

Author:

Fan Yuhan,Xiong Haiyan,Liu Jiahao,Liu Guoxu,Ma QiangORCID,Wei YuliangORCID,Liang MengqingORCID,Xu HouguoORCID

Abstract

Palm oil, with its higher production, lower prices, and higher levels of palmitic acid and oleic acid, may have great potential for use in the aquafeed industry. In this study, with an 8‐week feeding experiment, the efficacy of palm oil as a substitute for fish oil in tiger puffer feeds was comprehensively evaluated. The control diets (FO group) contained 8% marine fish oil as the main lipid source, while in the treatment diets, the added marine fish oil was replaced with palm oil at 25%, 50%, 75%, and 100%, respectively, which was named 25PO, 50PO, 75PO, and 100PO, respectively. Juvenile tiger puffers with an initial weight of 15.0 ± 0.04 g were used, with three replicate tanks of 30 juvenile fish tiger puffer for each dietary group. The fish oil replacement by palm oil did not have an adverse effect on fish growth and feeding, but the weight gain decreased by 17.3% in group PO100. Palm oil had no significant effects on fish proximate composition and muscle texture. The effects of dietary palm oil on muscle fatty acid composition were not significant, with DHA and EPA significantly lowered only in the 100PO group. In contrast, the changes in liver and intestinal fatty acid compositions in response to diets were more significant than those in the muscle. In the intestine, the replacement of more than 50% fish oil by palm oil significantly downregulated the gene expression associated with peroxisomal fatty acid β‐oxidation and triglyceride hydrolysis, while upregulated the expression of cholesterol biosynthetic genes. In the liver, the replacement of more than 75% fish oil also significantly upregulated the cholesterol synthesis. In conclusion, palm oil can replace 75% of added marine fish oil in tiger puffer diets and does not adversely affect the growth performance, feed utilization, muscle composition, and muscle texture.

Funder

Natural Science Foundation of Shandong Province

Central Public-interest Scientific Institution Basal Research Fund, Chinese Academy of Fishery Sciences

Earmarked Fund for China Agriculture Research System

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3