Mathematical Modelling of COVID-19 Transmission in Kenya: A Model with Reinfection Transmission Mechanism

Author:

Wangari Isaac Mwangi12ORCID,Sewe Stanley2,Kimathi George2,Wainaina Mary2,Kitetu Virginia2,Kaluki Winnie2

Affiliation:

1. Bomet University College, School of Pure and Applied Sciences, Department of Mathematics and Computer Science, P.O. Box 701 20400, Bomet, Kenya

2. The Catholic University of Eastern Africa (CUEA), Department of Mathematics and Actuarial Science, I Langata Main Campus I Bogani East Rd, Off Magadi Rd, P.O. Box 62157-00200 Nairobi, Kenya

Abstract

In this study we propose a Coronavirus Disease 2019 (COVID-19) mathematical model that stratifies infectious subpopulations into: infectious asymptomatic individuals, symptomatic infectious individuals who manifest mild symptoms and symptomatic individuals with severe symptoms. In light of the recent revelation that reinfection by COVID-19 is possible, the proposed model attempt to investigate how reinfection with COVID-19 will alter the future dynamics of the recent unfolding pandemic. Fitting the mathematical model on the Kenya COVID-19 dataset, model parameter values were obtained and used to conduct numerical simulations. Numerical results suggest that reinfection of recovered individuals who have lost their protective immunity will create a large pool of asymptomatic infectious individuals which will ultimately increase symptomatic individuals with mild symptoms and symptomatic individuals with severe symptoms (critically ill) needing urgent medical attention. The model suggests that reinfection with COVID-19 will lead to an increase in cumulative reported deaths. Comparison of the impact of non pharmaceutical interventions on curbing COVID19 proliferation suggests that wearing face masks profoundly reduce COVID-19 prevalence than maintaining social/physical distance. Further, numerical findings reveal that increasing detection rate of asymptomatic cases via contact tracing, testing and isolating them can drastically reduce COVID-19 surge, in particular individuals who are critically ill and require admission into intensive care.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3