Studying Disease Reinfection Rates, Vaccine Efficacy and the Timing of Vaccine Rollout in the context of Infectious Diseases

Author:

Amona Elizabeth B.1,Sahoo Indranil1,Boone Edward L.1,Ghanam Ryad2

Affiliation:

1. Virginia Commonwealth University

2. VCUQatar

Abstract

Abstract The global landscape has undergone distinct waves of COVID-19 infections, compounded by the emergence of variants, thereby introducing additional complexities to the ongoing pandemic. This research uniquely explores the varied efficacy of existing vaccines and the pivotal role of vaccination timing in the context of COVID-19. Departing from conventional modeling, we introduce two models that account for the impact of vaccines on infections, reinfections, and deaths. We estimate model parameters under the Bayesian framework, specifically utilizing the Metropolis-Hastings Sampler. The study conducts data-driven scenario analyses for the State of Qatar, quantifying the potential duration during which the healthcare system could have been overwhelmed by an influx of new COVID-19 cases surpassing available hospital beds. Additionally, the research explores similarities in predictive probability distributions of cumulative infections, reinfections, and deaths, employing the Hellinger distance metric. Comparative analysis, utilizing the Bayes factor, underscores the plausibility of a model assuming a different susceptibility rate to reinfection, as opposed to assuming the same susceptibility rate for both infections and reinfections. Results highlight the adverse outcomes associated with delayed vaccination, emphasizing the efficacy of early vaccination in reducing infections, reinfections, and deaths. Our research advocates prioritizing early vaccination as a key strategy in effectively combating future pandemics. This study contributes vital insights for evidence-based public health interventions, providing clarity on vaccination strategies and reinforcing preparedness for challenges posed by infectious diseases.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3