Optimal Analysis of Tunnel Construction Methods through Cross Passage from Subway Shaft

Author:

Song Zhanping12,Cao Zhilin1ORCID,Wang Junbao1ORCID,Wei Shoufeng2,Hu Shichun2ORCID,Niu Zelin12

Affiliation:

1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. Chinese Railway Bridge Engineering Bureau Group Co. Ltd., Tianjin 300300, China

Abstract

The conversion section of the cross passage and shaft is a priority concern in the stress transformation of a tunnel structure during subway underground excavation. In the construction of Subway Line 5 in Xi'an, China, the main line in the loess layer was constructed through the cross passage from the subway shaft of the Yue Deng Pavilion–San Dian Village Station tunnel section. Numerical simulation and field measurement were adopted to study the construction stability of the cross passage and shaft under two possible construction methods: the “shaft followed by cross passage construction” method and the “cross passage parallel shaft construction” method. The results showed that the surface deformation and plastic zone of the surrounding rock are similar under the two construction methods. However, of the two, the “cross passage parallel shaft construction” method was more advantageous in controlling the structural deformation of the original shaft and the stress distribution of the horsehead structure. The field monitoring data showed that the surface settlements and the deformation of the original shaft structures meet the requirement of control standards under the “cross passage parallel shaft construction” method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3