The Influence of Construction Methods on the Stability of Tunnels and Ground Structures in the Construction of Urban Intersection Tunnels

Author:

Ren Yiwei1ORCID,Zhou Shijun2,Jia Jiayin2,Yuan Qiang1ORCID,Liu Maoyi3,Song Shuyi4,Zhou Zelin5,Wang Zhen6

Affiliation:

1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China

2. Chongqing Zhonghuan Construction Co., Ltd., Chongqing 401120, China

3. Chongqing City Construction Investment (Group) Co., Ltd., Chongqing 400023, China

4. Chongqing Juneng Construction Group Co., Ltd., Chongqing 401120, China

5. China 19th Metallurgical Corporation, Chengdu 610031, China

6. Chongqing Gas Group Co., Ltd., Chongqing 400045, China

Abstract

The construction of intersection tunnels in urban induces multiple stress redistribution in the surrounding rock, leading to engineering disasters such as instability in rock strata during excavation, disturbance of supporting structures in existing tunnels, and subsidence of ground adjacent buildings. Employing an appropriate construction method is crucial in circumventing excessive stress concentrations and large-scale rock strata subsidence, making it a key aspect of urban intersection tunnel engineering. In this paper, a numerical model for an urban intersection tunnel is developed based on an underground circular road project in a central business district. We conduct numerical simulations of the excavation processes using the full-section method, step method, and center cross diagram (CRD) method, respectively. The findings indicate that while different construction methods do not change the variation trends of surrounding rock stress and displacement, adjacent ground building deformation, and existing tunnel convergence, they affect the variation degrees. The maximum compressive and tensile stresses in the surrounding rock caused by the CRD method are the smallest, which are 3.56 MPa and 0.76 MPa, respectively. The maximum arch subsidence affected the amount, and horizontal convergence affected the amount of branch tunnel #1 caused by the CRD method are the smallest too, which respectively are 1.428 mm and 0.931 mm. The foundation subsidence and overall inclination of the ground building resulting from the three methods are identical. Then, we discuss the construction safety of the three methods and obtain the influence order on construction stability, which is as follows: full-section method > step method > CRD method. It is concluded that the CRD method is the most suitable for urban intersection tunnel engineering in terms of safety. This study could offer valuable insights for selecting construction methods in urban intersection tunnel engineering and provide a foundation for evaluating the safety and stability of tunnel construction.

Funder

Open Science Foundation Project Funded by State Key Laboratory of Coal Mine Disaster Dynamics and Control

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3