Affiliation:
1. Institute of Rail Transit, Tongji University, Shanghai, China
Abstract
The vibrations of high-speed trains may strongly affect the safety and ride comfort of passengers, which issue requires the damping optimization of under-chassis equipment (UCE). In this study, the natural frequency of UCE is determined via the dynamic vibration absorber theory. The performed investigation of UCE-car body system vibration behavior revealed that an eccentricity of UCE results in the coupling vibration in six degrees of freedom, which leads to significant changes in its vibration mode and frequency. Thus, the natural frequency of UCE deviates from the initially determined value, which implies that the vibration damping effect is weakened. In this study, two decoupling optimization design methods, namely, forward and inverse decoupling methods, are proposed to solve this problem. The analysis of results obtained proves the feasibility of the proposed methods, which yield favorable decoupling degrees for the UCE vibration modes and minimize the offset of the vibration mode frequency from the initial natural one. These methods are considered quite instrumental in the improvement of vibration damping effect for high-speed trains.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献