Decoupling Optimization Design of Under-Chassis Equipment Suspension System in High-Speed Trains

Author:

Xia Zhanghui1ORCID,Gong Dao1ORCID,Zhou Jinsong1ORCID,Sun Wenjing1,Sun Yu1ORCID

Affiliation:

1. Institute of Rail Transit, Tongji University, Shanghai, China

Abstract

The vibrations of high-speed trains may strongly affect the safety and ride comfort of passengers, which issue requires the damping optimization of under-chassis equipment (UCE). In this study, the natural frequency of UCE is determined via the dynamic vibration absorber theory. The performed investigation of UCE-car body system vibration behavior revealed that an eccentricity of UCE results in the coupling vibration in six degrees of freedom, which leads to significant changes in its vibration mode and frequency. Thus, the natural frequency of UCE deviates from the initially determined value, which implies that the vibration damping effect is weakened. In this study, two decoupling optimization design methods, namely, forward and inverse decoupling methods, are proposed to solve this problem. The analysis of results obtained proves the feasibility of the proposed methods, which yield favorable decoupling degrees for the UCE vibration modes and minimize the offset of the vibration mode frequency from the initial natural one. These methods are considered quite instrumental in the improvement of vibration damping effect for high-speed trains.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3