Design and Implementation of Optimum LSD Coded Signal Processing Algorithm in the Multiple-Antenna System for the 5G Wireless Technology

Author:

Pateriya Priyanka1ORCID,Singhai Rakesh2,Shukla Piyush3

Affiliation:

1. Rajiv Gandhi Technical University, Bhopal, India

2. University Institute of Technology RGPV, Shivpuri, India

3. UIT-Rajiv Gandhi Technical University, Bhopal, India

Abstract

The 5G system requires an optimum coding technique to achieve the high diversity gain, low bit error rate (BER), and low detection complexity. Various coding techniques were developed in recent times for improving the diversity performance of the MIMO systems. Space-time-coding (STC) is used to fulfill the requirement of handling large data flow in the 5G wireless communications. It is highly required to optimize the orthogonal nature of STC. The paper proposed a novel design of the optimum linearly scalable dispersion code (O-LSDC). In this paper, an optimum coefficient-based O-LSDC is designed based on the elementary matrix operations, unitary matrix normalization technique, and coefficient mapping strategy. Mapped coefficients are linearly solved for optimum value estimation. To find the optimum solution of the LSDC codes, five cases of LSDC are defined based on the scaling coefficients and then performance is evaluated against the BER vs. SNR. Evaluating the simulation results in terms of error probabilities for the five different orthonormal LSDC, this work simulates the system for multiple antennas using the Rayleigh fading MIMO system model. Also, evaluating the impact of the proposed LSDC over the BER performance for the varied number of Monte Carlo iterations, then the performance graph is plotted for multiple-antennas system. The proposed O-LSDC under Rayleigh fading channel using the M-PSK modulation enhances the performance of the 5G and beyond communication system in terms of BER and SNR.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3