Aggregation-Based Dynamic Channel Bonding to Maximise the Performance of Wireless Local Area Networks (WLAN)

Author:

Parashar Vivek1,Kashyap Ramgopal2,Rizwan Ali3ORCID,Karras Dimitrios A.4,Altamirano Gilder Cieza5,Dixit Ekta6,Ahmadi Fardin7ORCID

Affiliation:

1. Amity University Madhya Pradesh, Gwalior, India

2. Amity University Chhattisgarh, India

3. Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

4. National and Kapodistrian, University of Athens (NKUA), School of Science, Dept. General, Athens, Greece

5. Universidad Nacional Autónoma de Chota, Cajamarca, Peru

6. S.S.D.Women’s Institute of Technology, Bathinda, Bathinda, Punjab, India

7. Rana University, Kabul, Afghanistan

Abstract

Channel bonding is considered by the IEEE 802.11ac amendment to improve wireless local area network (WLAN) performance. In this article, the channel bonding and aggregation method were proposed to increase wireless local area network performance (WLANs). It combines many channels (or lanes) to boost the capacity of modem traffic. Channel bonding is the combination of two neighbouring channels within a certain frequency band to increase wireless device throughput. Wi-Fi employs channel bonding, also known as Ethernet bonding. Channel bandwidth is equal to the uplink/downlink ratio multiplied by the operational capacity. A single 20 MHz channel is divided into two, four, or eight power channels. At 80 MHz, there are more main and smaller channels. Performance of short-range WLANs is determined through graph-based approach. The two-channel access techniques including channel bonding proposed for the IEEE 802.11ac amendment are analysed and contrasted. The novel channel sizing algorithm based on starvation threshold is proposed to expand the channel size to improve WLAN performance. Second-cycle throughput is estimated at 20 Mbps, much beyond the starvation threshold. Our test reveals access points (AP) 1, 2, and 4 have enough throughput. A four-AP WLAN with a 5-Mbps starvation threshold is presented. C160 = 1 since there is only one 160 MHz channel. MIR (3, 160 (a, a, a)) =0, indicating that AP 3’s predicted throughput is 0. The algorithm rejects the 160 MHz channel width since ST is larger than 0. The channel width in MHz is given by B =0,1 MIR. The MIR was intended to maximise simultaneous broadcasts in WLANs. The authors claim that aggregation with channel bonding outperforms so all WLAN APs should have a single-channel width. It usually outperforms fairness-based measures by 15% to 20%. Wi-Fi standards advise “channel bonding,” or using higher frequency channels. Later standards allow channel bonding by increasing bands and channel lengths. Wider channels enhance average WLAN AP throughput, but narrower channels reduce appetite. Finally, it is concluded that APs are more useful than STAs.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3