Affiliation:
1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
Abstract
A hybrid uncertain model is introduced to deal with the uncertainties existing in a disc brake system in this paper. By the hybrid uncertain model, the uncertain parameters of the brake with enough sampling data are treated as probabilistic variables, while the uncertain parameters with limited data are treated as interval probabilistic variables whose distribution parameters are expressed as interval variables. Based on the hybrid uncertain model, the reliability-based design optimization (RBDO) of a disc brake with hybrid uncertainties is proposed to explore the optimal design for squeal reduction. In the optimization, the surrogate model of the real part of domain unstable eigenvalue of the brake system is established, and the upper bound of its expectation is adopted as the optimization objective. The lower bounds of the functions related to system stability, the mass, and the stiffness of design component are adopted as the optimization constraints. The combinational algorithm of Genetic Algorithm and Monte-Carlo method is employed to perform the optimization. The results of a numerical example demonstrate the effectiveness of the proposed optimization on improving system stability and reducing squeal propensity of a disc brake under hybrid uncertainties.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献