Stability Optimization of a Disc Brake System with Hybrid Uncertainties for Squeal Reduction

Author:

Lü Hui1,Yu Dejie1

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China

Abstract

A hybrid uncertain model is introduced to deal with the uncertainties existing in a disc brake system in this paper. By the hybrid uncertain model, the uncertain parameters of the brake with enough sampling data are treated as probabilistic variables, while the uncertain parameters with limited data are treated as interval probabilistic variables whose distribution parameters are expressed as interval variables. Based on the hybrid uncertain model, the reliability-based design optimization (RBDO) of a disc brake with hybrid uncertainties is proposed to explore the optimal design for squeal reduction. In the optimization, the surrogate model of the real part of domain unstable eigenvalue of the brake system is established, and the upper bound of its expectation is adopted as the optimization objective. The lower bounds of the functions related to system stability, the mass, and the stiffness of design component are adopted as the optimization constraints. The combinational algorithm of Genetic Algorithm and Monte-Carlo method is employed to perform the optimization. The results of a numerical example demonstrate the effectiveness of the proposed optimization on improving system stability and reducing squeal propensity of a disc brake under hybrid uncertainties.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3