Developing the method ensuring stable braking via advanced design of braking devices

Author:

Polyakov P. A.1ORCID

Affiliation:

1. Kuban State Technological University

Abstract

The aim is to develop a method for ensuring the stability and efficiency of the braking process by differentiating the friction linings of brake pads of pad-type disc braking mechanisms. The research applied differentiation of the interaction time of friction pairs and their area, which provides the highest stability indicators of braking mechanisms. The non-standardized bench equipment developed by the author, as well as segmental braking mechanisms providing differentiation of friction pairs by area were used in the study. A method of designing the resultant braking torque was developed using the relationship between the transverse movement of the pads and the developed braking torque of the friction unit. As a result of bench tests, the stability and fluctuation coefficients of the braking torque of the developed pad-type disc brake mechanisms with six pressing elements increased by 12.2 and 34.9%. These values were obtained as compared to serial brake mechanisms equipped with a monopressing mechanism with a single brake pad. The discrepancies between the simulated and obtained data during the bench test on the stability criteria averaged 5.1 and 6.7% for the stability coefficients and braking torque fluctuations for the three brake mechanism variants under consideration, respectively. Differentiation of pressing elements and segmentation of brake pads has the effect of increasing the stability criteria and braking efficiency for pad-type disc brakes. With the analysis of the dependence of the transverse displacement and the developed braking torque, a guaranteed result on the stability criterion and braking torque fluctuations of pad-type disc brakes was modeled. Based on the conducted bench tests, the model developed for obtaining the resultant braking torque for the braking mechanism with segmental pads can be used for designing friction pairs with the set parameters.

Publisher

Irkutsk National Research Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3