A Study of Novel Hybrid Antilock Braking System Employing Magnetorheological Brake

Author:

Shiao Yaojung1,Nguyen Quang-Anh1,Lin Jhe-Wei1

Affiliation:

1. National Taipei University of Technology, 1 Sec. 3, Chung-hsiao E. Road, Taipei 10608, Taiwan

Abstract

A novel hybrid antilock braking system (ABS) with the combination of auxiliary brake and a multipole magnetorheological (MR) brake was proposed in this paper. The MR brake with innovative operation concept can replace existed hydraulic brake system or works as an auxiliary brake. Two simulation models of the MR brakes, inner rotor and outer rotor structures, have been built. The outer rotor design was chosen due to its better braking performance and suitable mechanism for using on motorcycle. After that, motorcycle simulation software was employed to validate the hybrid ABS system under appropriated working condition. Two controllers, the ordinary and self-organizing fuzzy logic controllers (FLC and SOFLC), were evaluated on ABS performance to pick the suitable one. Simulation results confirm the more adaptations to different road conditions of the SOFLC with 18% higher brake performance compared to ones of ordinary FLC. Brake performance can increase 12% more with the combination of SOFLC and road condition estimator (RCE). It is concluded that this hybrid ABS is feasible for actual application by effectively improving the brake performance for ensuring driving stability.

Funder

National Science Council Taiwan

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3