Position control based on Gaussian function applied on magneto-rheological fluid disc brake of a hybrid mechanical device (MR brake - DC motor)

Author:

Rocha-Gómez Iván1ORCID,Susarrey-Huerta Orlando2ORCID,Aguilar-Pérez Arturo3ORCID,Suárez-Calderón Juan Carlos1ORCID,Flores-Campos Juan Alejandro4ORCID,Desiderio-Maya Daniela5ORCID,Cruz-Deviana Mario Ricardo3ORCID,Cortés-Pérez Jacinto3,Torres-Cedillo Sergio Guillermo3,Reyes-Solís Alberto3

Affiliation:

1. Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, , México

2. Escuela Superior de Ingeniería Mecánica y Eléctrica, , , México

3. Facultad de Estudios Superiores Aragón, Universidad Nacional Autónoma de México, , México

4. Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, , México

5. Escuela Superior de Ingeniería Mecánica y Eléctrica, nstituto Politécnico Nacional, , México

Abstract

This article presents an angular position control, based on the Gaussian function, of a Magneto-Rheological fluid disc brake (MR brake) driven by a DC motor. Our proposed control strategy is to apply a continuous magnetic flux density to the MR brake, which will be maximum when the proportional controller of the DC motor reaches the desired position to brake the hybrid device. The MR brake controller activates a braking torque that adopts the behavior of the Gaussian function instead of a pulsed braking torque as provided by other commonly used controllers (On-Off controllers). The response of the MR brake controller, which is presented in a closed-loop feedback system, depends on the angular position error of the shaft and a tuning parameter representing the critical angular position at which the magnetic flux density, which is applied to the MR brake, reaches 60.65% of its maximum value. The advantage is to avoid knowing the dynamic parameters, such as the inertia of the mechanical device or its speed, and to reject these perturbations by a simple tuning parameter of the MR brake. To show the effectiveness of the proposed controller, the dynamic model of a slider-crank mechanism is considered. The results showed similar behavior as conventional controllers, where overshoot and oscillations were minimized. This behavior has been obtained in other research articles using controllers that require a greater amount of data processing.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference26 articles.

1. Semiactive control for vibration attenuation;Leitmann;Journal of Intelligent Material Systems and Structures,1994

2. Magnetorheological Fluid Technology

3. Rheological properties of magnetorheological fluids;Genç;Smart Materials and Structures,2002

4. What makes a good MR fluid?;Carlson;Journal of Intelligent Material Systems and Structures,2002

5. Properties and applications of commercial magnetorheological fluids;Jolly;Journal of Intelligent Material Systems and Structures,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3