Fe-Doped TiO2Nanoparticles Produced via MOCVD: Synthesis, Characterization, and Photocatalytic Activity

Author:

Othman Siti Hajar1,Abdul Rashid Suraya12,Mohd Ghazi Tinia Idaty1,Abdullah Norhafizah1

Affiliation:

1. Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Selangor, 43400 Serdang, Malaysia

2. Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, University Putra Malaysia, Selangor, 43400 Serdang, Malaysia

Abstract

Iron (Fe)-doped titanium dioxide (TiO2) nanoparticles were produced via the metallorganic chemical vapour deposition (MOCVD) method at 700C. Different amounts of ferrocene as the Fe dopant source (0.001–0.05 g) were introduced inside the reactor together with the titanium precursor in order to synthesize different Fe dopant concentrations of TiO2nanoparticles. Nitrogen (N2) adsorption results showed that increasing the Fe dopant concentration caused a slight increase in the surface area of the nanoparticles due to the decrease in nanoparticle size. The UV-diffuse reflectance spectra demonstrated an absorption shift in Fe-doped TiO2nanoparticles to longer wavelengths, thus showing an enhancement of the absorption in the visible spectrum. Bandgap energy values determined from the UV-diffuse reflectance spectra data decreased with an increase in the Fe dopant concentrations. The photocatalytic activity of Fe-doped TiO2nanoparticles was investigated via degradation of methylene blue under UV and fluorescent light. It was found that Fe doping reduced the photocatalytic activity of the samples. Based on X-ray photoelectron spectroscopy (XPS) results, it is believed that this is due to the unfavourable location of Fe3+inside the interior matrix of the TiO2nanoparticles rather than on the exterior surface, which would affect photocatalytic behaviour.

Funder

University Putra Malaysia

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3