Affiliation:
1. Department of Chemical Engineering Materials Environment, Sapienza-Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
2. Department of Ecology, Azerbaijan University of Architecture and Construction, AZ1073 Baku, Azerbaijan
Abstract
Iron-doped titanium dioxide nanoparticles are widely employed for photocatalytic applications under visible light due to their promising performance. Nevertheless, the manufacturing process, the role of Fe3+ ions within the crystal lattice of titanium dioxide, and their impact on operational parameters are still a subject of controversy. Based on these assumptions, the primary objective of this review is to delineate the role of iron, ascertain the optimal quantity, and elucidate its influence on the main photocatalysis parameters, including nanoparticle size, band gap, surface area, anatase–rutile transition, and point of zero charge. Moreover, an optimized synthesis method based on comprehensive data and insights from the existing literature is proposed, focusing exclusively on iron-doped titanium oxide while excluding other dopant variants.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献