Prediction for Distant Metastasis of Breast Cancer Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Images under Deep Learning

Author:

Li Li1ORCID,Tian Hongzhe1ORCID,Zhang Baorong1ORCID,Wang Weijun1ORCID,Li Bo1ORCID

Affiliation:

1. Department of Medical Iconography, Baoji Central Hospital, Baoji 721008, Shaanxi, China

Abstract

This research aimed to explore the effect of using magnetic resonance imaging (MRI) radiomic features to establish a model for predicting distant metastasis under dynamic contrast-enhanced MRI imaging with deep learning algorithms. The deep learning algorithm was used to segment the images. A total of 96 cases with 100 lesions were included in the metastatic group, including 2 cases of bifocal breast cancer and 2 cases of multifocal breast cancer. There were 192 cases in the nonmetastatic group, with 197 lesions, including 5 cases of multifocal breast cancer. After dynamic contrast-enhancement, the morphological features and grayscale statistical features were extracted from the lesions to establish a prediction model through sum-sum check and feature dimension reduction. The accuracy, sensitivity, specificity, and area under receiver operator characteristic curve (AUC) of prediction models based only on imaging features were compared with those created by combining radiomic features with clinical and pathological features. The created predictive model based on radiomic features for distant metastases in breast cancer showed a sensitivity of 66.7%, a specificity of 84.2%, an accuracy of 78.3%, and an AUC of 0.744. The sensitivity of the prediction model for distant metastasis of breast cancer was 67.7%, the specificity was 86.8%, the accuracy was 80.5%, and the AUC was 0.763. Bone, lung, and liver were the most common distant metastatic sites of breast cancer. Under the dynamic contrast-enhanced MRI of deep learning, the prediction model combining radiomic features with clinical and pathological features showed better predictive performance.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3