Implementation of the Human-Like Lane Changing Driver Model Based on Bi-LSTM

Author:

Cai Junyu1ORCID,Jiang Haobin1ORCID,Wang Junyan2ORCID

Affiliation:

1. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China

2. School of Automotive Engineering, Zhenjiang College, Zhenjiang 212003, China

Abstract

If the driving behavior of an autonomous vehicle is similar to that of a skilled driver, the human driver can extricate himself from fatigue operation and the comfort of passengers can also be guaranteed. Therefore, this paper studies the human-like lane-changing model of an autonomous vehicle. The lane-changing characteristic data of skilled drivers are collected and analyzed through a real vehicle test. Then, comparing the MPC-based driver model with the steering wheel angle of human drivers, we found that the MPC-based model could hardly reflect the maneuvering characteristics of human drivers, so we proposed a driver model with steering wheel angle continuity for human drivers. This paper uses four neural network models to compare the prediction on the test set, then uses different input types to compare the prediction accuracy of the model, and finally verifies the generalization ability of the model on the verification set. These three test results show that the prediction results of the human-like lane-changing driving model based on Bi-LSTM are closest to the real steering wheel angle sequence of skilled drivers. The test results demonstrate that the Bi-LSTM-based human-like lane-changing driving model achieves 9.8% RMSE and 6.8% MAE, which improves 10.8% RMSE and 10.3% MAE over LSTM. The model can generate the steering wheel angle sequence in the process of lane changing like a human, so as to realize the human simulation control of an autonomous vehicle for lane-changing conditions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3