Construction of Driver Models for Cut-in of Other Vehicles in Car-Following Situations

Author:

Honda Kaisei,Oikawa Shoko,Hirose Toshiya

Abstract

<div class="section abstract"><div class="htmlview paragraph">The purpose of this study was to construct driver models using long short-term memory (LSTM) in car-following situations, where other vehicles change lanes and cut in front of the ego vehicle (EGV). The development of autonomous vehicle systems (AVSs) using personalized driver models based on the individual driving characteristics of drivers is expected to reduce their discomfort with vehicle control systems. The driving characteristics of human drivers must be considered in such AVSs. In this study, we experimentally measured data from the EGV and other vehicles using a driving simulator consisting of a six-axis motion device and turntable. The experimental scenario simulated a traffic congestion scenario on a straight section of a highway, where a cut-in vehicle (CIV) changed lanes from an adjacent lane and entered in between the EGV and preceding vehicle (PRV). To construct a highly accurate model, we analyzed critical variables as input information affecting the output of the LSTM model using a random forest (RF) model. The results showed the high importance of the EGV velocity, THW, and relative velocity as information related to the traveling lane, in addition to the CIV velocity as information related to the CIV. The CIV data obtained after the lane change were used for the PRV in this analysis. Based on the variables analyzed in the RF model, we constructed personalized driver models using LSTM, and the mean coefficient of determination was greater than 0.95, indicating that this system is more accurate than the conventional car-following models. The driver models constructed in this study are expected to improve the usability of AVSs employing the driver model.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3