Extraction and Characterization of Cellulose from Coffee Husk and Brewery’s Spent Grain Fibers Using Alkali-Hydrogen Peroxide Treatment Method

Author:

Amensisa Yoobsan Ejeta12ORCID,Demsash Hundessa Dessalegn3ORCID,Tefera Muluken Eshetu1

Affiliation:

1. School of Chemical Engineering, Jimma Institute of Technology, Jimma University, Jimma 378, Ethiopia

2. Department of Food Technology and Process Engineering, Oda Bultum University, Chiro 226, Ethiopia

3. Chemical Industries Corporation, Addis Ababa, Ethiopia

Abstract

Coffee husk (CH) and brewery spent grain (BSG) fibers are sustainable industrial residues that consist of cellulose. The present study aimed at the extraction of cellulose from CH and BSG fibers and to study the effect of alkali-hydrogen peroxide (5% NaOH–7% H2O2) treatment during the extraction by characterizing the extracted cellulose. Characterization of cellulose particles, such as crystallinity, functional groups, thermal properties, and morphology, was conducted by performing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyzer (TGA), and scanning electron microscopy (SEM), respectively. The finding shows that the maximum cellulose yields obtained from CH and BSG fibers are 37.3% and 26.5%, respectively. From the XRD results, the cellulose obtained from CH fiber (C-CH) and from BSG fiber (C-BSG) showed diffractive peaks with the highest intensity of approximately 1,003 and 1,236 counted at 2θ = 22°, respectively. A reduction in the absorption of peaks was observed on the FTIR spectrum for both C-BSG and C-CH samples at different wavelengths. SEM demonstrated that the surface roughness of the celluloses was enhanced. TGA showed that the maximum temperature decomposition observed for both C-CH and C-BSG is 360°C and 380°C, respectively. Generally, in this study, alkali-hydrogen peroxide (5% NaOH–7% H2O2) treatment was effectively used for the treatment of BSG and CH fibers for the extraction and surface modification of cellulose particles. The extracted cellulose in the present study can be used as an alternative to conventional cellulose for the manufacturing of biocomposite materials, preparation of particle boards and furniture, and production of food packaging materials.

Funder

Jimma University

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3