Efficient Interaction Recognition through Positive Action Representation

Author:

Hu Tao1,Zhu Xinyan12,Guo Wei1,Su Kehua2

Affiliation:

1. Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China

2. School of Computer Science, Wuhan University, Wuhan 430072, China

Abstract

This paper proposes a novel approach to decompose two-person interaction into a Positive Action and a Negative Action for more efficient behavior recognition. A Positive Action plays the decisive role in a two-person exchange. Thus, interaction recognition can be simplified to Positive Action-based recognition, focusing on an action representation of just one person. Recently, a new depth sensor has become widely available, the Microsoft Kinect camera, which provides RGB-D data with 3D spatial information for quantitative analysis. However, there are few publicly accessible test datasets using this camera, to assess two-person interaction recognition approaches. Therefore, we created a new dataset with six types of complex human interactions (i.e., named K3HI), including kicking, pointing, punching, pushing, exchanging an object, and shaking hands. Three types of features were extracted for each Positive Action: joint, plane, and velocity features. We used continuous Hidden Markov Models (HMMs) to evaluate the Positive Action-based interaction recognition method and the traditional two-person interaction recognition approach with our test dataset. Experimental results showed that the proposed recognition technique is more accurate than the traditional method, shortens the sample training time, and therefore achieves comprehensive superiority.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Attention-Based Variational Autoencoder Models for Human–Human Interaction Recognition via Generation;Sensors;2024-06-17

2. Hi4D: 4D Instance Segmentation of Close Human Interaction;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

3. MSNet: a lightweight multi-scale deep learning network for pedestrian re-identification;Signal, Image and Video Processing;2023-04-28

4. Intent Prediction in Human–Human Interactions;IEEE Transactions on Human-Machine Systems;2023-04

5. Deep learning and RGB-D based human action, human–human and human–object interaction recognition: A survey;Journal of Visual Communication and Image Representation;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3