Chord-Length Shape Features for Human Activity Recognition

Author:

Sadek Samy1,Al-Hamadi Ayoub1,Michaelis Bernd1,Sayed Usama1

Affiliation:

1. Institute for Electronics, Signal Processing and Communications (IESK), Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany

Abstract

Despite their high stability and compactness, chord-length shape features have received relatively little attention in the human action recognition literature. In this paper, we present a new approach for human activity recognition, based on chord-length shape features. The most interesting contribution of this paper is twofold. We first show how a compact, computationally efficient shape descriptor; the chord-length shape features are constructed using 1-D chord-length functions. Second, we unfold how to use fuzzy membership functions to partition action snippets into a number of temporal states. On two benchmark action datasets (KTH and WEIZMANN), the approach yields promising results that compare favorably with those previously reported in the literature, while maintaining real-time performance.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Hindawi Limited

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel DWT and PC-Based Profile Generation Method for Human Action Recognition;Transactions on Computer Systems and Networks;2021

2. A Fuzzy Framework for Real-Time Gesture Spotting and Recognition;Journal of Russian Laser Research;2017-01

3. Human Action Recognition: Contour-Based and Silhouette-Based Approaches;Computer Vision in Control Systems-2;2014-10-31

4. Efficient Interaction Recognition through Positive Action Representation;Mathematical Problems in Engineering;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3