Affiliation:
1. Institute for Electronics, Signal Processing and Communications (IESK), Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany
Abstract
Despite their high stability and compactness, chord-length shape features have received relatively little attention in the human action recognition literature. In this paper, we present a new approach for human activity recognition, based on chord-length shape features. The most interesting contribution of this paper is twofold. We first show how a compact, computationally efficient shape descriptor; the chord-length shape features are constructed using 1-D chord-length functions. Second, we unfold how to use fuzzy membership functions to partition action snippets into a number of temporal states. On two benchmark action datasets (KTH and WEIZMANN), the approach yields promising results that compare favorably with those previously reported in the literature, while maintaining real-time performance.
Funder
Deutsche Forschungsgemeinschaft
Subject
Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献