Analysis of Converter Combustion Flame Spectrum Big Data Sets Based on HHT

Author:

Chang Jincai1ORCID,Wang Jiecheng1ORCID,Wang Zhuo1ORCID,Shan Shuaijie2ORCID,Liu Chunfeng1ORCID

Affiliation:

1. College of Sciences, North China University of Science and Technology, Tangshan 063210, China

2. College of Electrical Engineering, North China University of Science and Technology, Tangshan 063210, China

Abstract

The characteristics of the converter combustion flame are one of the key factors in the process control and end-point control of steelmaking. In a big data era, it is significant to carry out high-speed and effective processing on frame spectrum data. By installing data acquisition devices at the converter mouth and separating the spectrum according to the wave length, high-dimensional converter flame spectrum big data sets are achieved. The data of each converter is preprocessed after information fusion. By applying the SM software, the correspondence with the carbon content is obtained. Selecting the relative data of the two peak ratios and the single-peak absolute data as a one-dimensional signal, due to the obvious nonlinear and nonstationary characteristics, using HHT to do empirical mode decomposition and Hilbert spectrum analysis, the variation characteristics after 70% of the converter steelmaking process are obtained. From data acquisition, data preprocessing to data analysis and results, it provides a new perspective and method for the study of similar problems.

Funder

Hebei Key Laboratory of Data Science and Applications

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3