A Novel Segmentation Method for Furnace Flame Using Adaptive Color Model and Hybrid-Coded HLO

Author:

Zhang Pinggai1,Fei Minrui1ORCID,Wang Ling1ORCID,Wu Xian1,Peng Chen1,Chen Kai12

Affiliation:

1. Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China

2. Shanghai Automation Instrumentation Co., Ltd., Shanghai 200072, China

Abstract

In recent years, the combustion furnace has been widely applied in many different fields of industrial technology, and the accurate detection of combustion states can effectively help operators adjust combustion strategies to improve combustion utilization and ensure safe operation. However, the combustion states inside the industrial furnace change according to the production needs, which further challenges the optimal set of model parameters. To effectively segment the flame pixels, a novel segmentation method for furnace flame using adaptive color model and hybrid-coded human learning optimization (AHcHLO) is proposed. A new adaptive color model with mixed variables (NACMM) is designed for adapting to different combustion states, and the AHcHLO is developed to search for the optimal parameters of NACMM. Then, the best NACMM with optimal parameters is adopted to segment the combustion flame image more precisely and effectively. Finally, the experiment results show that the developed AHcHLO obtains the best-known overall results so far on benchmark functions and the proposed NACMM outperforms state-of-the-art flame segmentation approaches, providing a high detection accuracy and a low false detection rate.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3