Affiliation:
1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
Abstract
Experimental and numerical investigations of the modal behavior of a prototype Kaplan turbine runner in air have been conducted in this paper. The widely used roving accelerometer method was used in the experimental modal analysis. A systematic approach from a single blade model to the whole runner has been used in the simulation to get a thorough understanding. The experimental results show that all the detected modes concentrate their displacements on the impacted blade. The numerical results show that the modes of the single blade form different mode families of the runner, and each mode family corresponds to a narrow frequency band. Harmonic response analysis shows that, at the response peak point, the single blade excitation can only get mode shapes with concentrations on the exciting blade due to the superposition of the close modes in each mode family, which explains the experimental results well, while the mode superposition can be avoided by the order excitation method. With the reduction of the connection stiffness between the blades and hub/control system, the frequencies of most modes change from insensitive to more and more sensitive to the connection stiffness change, which results in a sensitive area and an insensitive area. Through comparison with the experimental results, it is indicated that the natural frequencies of the runner can probably be predicted by merging the runner into a whole body.
Funder
Natural Science Foundation of Shandong Province
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献