Pressure Fluctuation Prediction of a Model Kaplan Turbine by Unsteady Turbulent Flow Simulation

Author:

Liu Shuhong1,Li Shengcai2,Wu Yulin1

Affiliation:

1. State Key Laboratory of Hydro Science and Hydraulic Engineering, Tsinghua University, Beijing 100084, China

2. WIMRC, University of Warwick, Coventry CV4 AL, UK

Abstract

While larger and larger turbines are being developed, hydraulic stability has become one of the key issues for their performance assessments. An accurate prediction of their pressure fluctuations is vital to the success of new model development. In this paper, we briefly introduced the method, i.e., the three-dimensional unsteady turbulent flow simulation of the complete flow passage, which we used for predicting the pressure fluctuations of a model Kaplan turbine. In order to verify the prediction, the model turbine was tested on the test rig at the Harbin Electric Machinery Co., Ltd. (HEC), China, which meets all the international standards. Our main findings from this numerical prediction of pressure fluctuations for a model Kaplan turbine are as follows. (1) The approach by using 3D unsteady turbulent flow including rotor-stator interaction for the whole flow passage is a feasible way for predicting model turbine hydraulic instability. The predicted values at different points along its flow passage all agree well with the test data in terms of their frequencies and amplitudes. (2) The low-frequency pressure fluctuation originating from the draft tube is maximal and influences the stability of the turbine operation mostly. The whole flow passage analysis shows that the swirling vortex rope in the draft tube is the major source generating the pressure fluctuations in this model turbine. (3) The second harmonic of the rotational frequency 2fn is more dominant than the blade passing frequency Zfn in the draft tube. This prediction, including the turbulence model, computational methods, and the boundary conditions, is valid either for performance prediction at design stage and/or for operation optimization after commissioning.

Publisher

ASME International

Subject

Mechanical Engineering

Reference14 articles.

1. Characteristics and Control of the Draft-Tube Flow in Part-Load Francis Turbine;Zhang;ASME J. Fluids Eng.

2. Power Swing in Hydroelectric Power Plants;Rheingans;Trans. ASME

3. Numerical Simulation of a Complete Francis Turbine Including Unsteady Rotor/Stator Interactions;Ruprecht

4. Simulation of Vortex Rope in a Turbine Draft Tube;Ruprecht

5. Of the Helical Vortex in the Turbine Draft Tube Modeling;Skotak

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3