Defect Detection in Tire X-Ray Images Using Weighted Texture Dissimilarity

Author:

Guo Qiang123,Zhang Caiming23,Liu Hui13,Zhang Xiaofeng4

Affiliation:

1. School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China

2. School of Computer Science and Technology, Shandong University, Jinan 250100, China

3. Shandong Provincial Key Laboratory of Digital Media Technology, Jinan 250014, China

4. School of Information and Electrical Engineering, Ludong University, Yantai 264025, China

Abstract

Automatic defect detection is an important and challenging problem in industrial quality inspection. This paper proposes an efficient defect detection method for tire quality assurance, which takes advantage of the feature similarity of tire images to capture the anomalies. The proposed detection algorithm mainly consists of three steps. Firstly, the local kernel regression descriptor is exploited to derive a set of feature vectors of an inspected tire image. These feature vectors are used to evaluate the feature dissimilarity of pixels. Next, the texture distortion degree of each pixel is estimated by weighted averaging of the dissimilarity between one pixel and its neighbors, which results in an anomaly map of the inspected image. Finally, the defects are located by segmenting this anomaly map with a simple thresholding process. Different from some existing detection algorithms that fail to work for tire tread images, the proposed detection algorithm works well not only for sidewall images but also for tread images. Experimental results demonstrate that the proposed algorithm can accurately locate the defects of tire images and outperforms the traditional defect detection algorithms in terms of various quantitative metrics.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3