A New Hybrid Model for Artificial Intelligence Assisted Tire Defect Detection: CTLDF+EnC

Author:

Askar Özcan1ORCID,Tekin Ramazan2ORCID

Affiliation:

1. BATMAN UNIVERSITY

2. BATMAN ÜNİVERSİTESİ

Abstract

This paper focuses on an artificial intelligence based worn tire detection system proposed to detect cracks in the tires of vehicle drivers. Although drivers are generally aware of the importance of tire tread depth and air pressure, they are not aware of the risks associated with tire oxidation. However, tire oxidation and cracks can cause significant problems affecting driving safety. In this paper, we propose a new hybrid architecture for tire crack detection, CTLDF+EnC (Cascaded Transfer Learning Deep Features + Ensemble Classifiers), which uses deep features from pre-trained transfer learning methods in combination with ensemble learning methods. The proposed hybrid model utilizes features from nine transfer learning methods and classifiers including Stacking, Soft and Hard voting ensemble learning methods. Unlike X-Ray image-based applications for industrial use, the model proposed in this study can work with images obtained from any digital imaging device. Among the models proposed in the study, the highest test accuracy value was obtained as 76.92% with the CTLDF+EnC (Stacking) hybrid model. With CTLDF+EnC (Soft) and CTLDF+EnC (Solid) models, 74.15% and 72.92% accuracy values were obtained respectively. The results of the study show that the proposed hybrid models are effective in detecting tire problems. In addition, a low-cost and feasible structure is presented.

Publisher

International Journal of Informatics Technologies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3