Numerical Analyses of a Shield Building Subjected to a Large Commercial Aircraft Impact

Author:

Liu Jingbo1,Han Pengfei1ORCID

Affiliation:

1. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China

Abstract

The missile-target interaction method is used to perform simulations of the impact of a commercial B767 aircraft on a shield building made of steel-concrete-steel sandwich panels to study impact damage characteristics. Refined finite element models of a shield building and two large commercial B767 aircraft are developed. The aircraft impact force is given and assessed with the Riera function to verify the B767 aircraft model, and a simulation analysis of tests is performed to verify the concrete model. The peak impact forces of the fuselage, engine, wing, and entire aircraft are approximately linearly proportional to the square of each impact velocity. The shield building subjected to the aircraft impact exhibits no perforation, and the damage range of the shield building expands with increasing impact velocity. The influences of impact velocity, aircraft mass, impact angle, and tie bar diameter on the deformation of the shield building are significant. The thickness of the steel plate plays an important part in the deformation of the shield building, whereas the compressive strength of concrete and the water in circular tank have only a slight effect on the deformation of the shield building.

Funder

National Science and Technology Major Project of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3