A Study on Steel-Concrete-Steel Wall to Resist Perforation from Rigid Projectile Impact

Author:

Han Pengfei12ORCID,Liu Jingbo1,Fei Bigang2,Wang Fei1

Affiliation:

1. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China

2. State Quality (Beijing) Construction Engineering Testing & Appraisal Center, Beijing 100081, China

Abstract

A calculation method of SCS wall which is used in the third generation of nuclear power plants to resist perforation from rigid projectile based on energy method is proposed in this paper. The energy is divided into four parts including the energy dissipated by front steel plate, concrete, back steel plate, and tie bars. The method accounts for the perforation of the concrete and steel plates separately and accounts for the interaction between them, and a practical antiperforation calculation formula of SCS wall with tie bars is given. The most formular results are close to the test results and the FEM results with a deviation less than 10%, which shows that the calculation formula given in this paper is reasonable and credible to effectively evaluate the perforation failure of the SCS wall and carry out a relevant design. The energy dissipated by the steel plate is much larger than that of the tie bars through a comparative analysis of dissipated energy. The effects of various factors on perforation velocity are analyzed according to finite element calculation results, which can be roughly divided into three categories: the influence of the thickness of steel plate and distance of tie bar is the largest effect, followed by that of yield strength of steel plate, yield strength of tie bar and diameter of tie bar, and that of compressive strength of concrete is the smallest effect.

Funder

National Science and Technology Planning Project

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3