The Impact of the Construction of Sponge Cities on the Surface Runoff in Watersheds, China

Author:

Dong Guoqiang123ORCID,Weng Baisha23ORCID,Qin Tianling23,Yan Denghua23ORCID,Wang Hao23ORCID,Gong Boya23ORCID,Bi Wuxia23ORCID,Xing Ziqiang23ORCID

Affiliation:

1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

3. China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

In order to study the effect of the construction of the sponge cites on the process of urban water circulation in China, we analyzed the precipitation data from 756 stations across China between 1961 and 2011 and national land-use data in 2014. The spatial distribution characteristics of built-up area and amount of annual average runoff interception in sponge cities were explored in five different zonal scale levels. Assuming that the sponge cities have been built at the national-level construction land and the volume capture ratio of annual runoff is taken as 85%, the amount of annual average runoff interception in sponge cities is 988.58 × 108 m3 during 1961 to 2011 in China, where the annual precipitation is greater than or equal to 400 mm. The cities with more amount of annual average runoff interception are mostly distributed in Beijing-Tianjin-Hebei region, the Yangtze River Delta, and the Pearl River Delta. As to the Haihe River Basin, the annual average amount of surface water resources is 135.69 × 108 m3 between 2005 and 2014, and the amount of annual average runoff interception is 219.58 × 108 m3 from 1961 to 2011. The construction of sponge cities has the greatest impact on the surface water resources in the Haihe River Basin. Taking 80%–85% as the volume capture ratio of annual runoff in sponge cities is not reasonable, which may lead to the irrational exploitation and utilization of regional water and soil resources.

Funder

National Key Research and Development Project

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3