Orthogonal Wavelet Transform-Based Gaussian Mixture Model for Bearing Fault Diagnosis

Author:

Li Weipeng12ORCID,Cao Yan1ORCID,Li Lijuan1ORCID,Hou Siyu1ORCID

Affiliation:

1. School of Mechanical Electrical Engineering, Xi’an Technological University, Xi’an 710000, China

2. School of Intelligent Manufacturing, Nanyang Institute of Technology, Nanyang 473000, China

Abstract

The Gaussian mixture model (GMM) is an unsupervised clustering machine learning algorithm. This procedure involves the combination of multiple probability distributions to describe different sample spaces. Principally, the probability density function (PDF) plays a paramount role by being transformed into local linear regression to learn from unknown f failure samples, revealing the inherent properties and regularity of the data, and enhancing the subsequent identification of the operating status of the machine. The wavelet transform is a multiresolution transformation that can observe the signal gradually from coarse to fine, highlighting the localization analysis of nonstationary signals. Orthogonal wavelet transform selects the appropriate orthogonal wavelet function to transform so that the local characteristics of the signal in the time domain and frequency domain can be specifically described and the feature information of the original data can be mastered more effectively. In this study, a diagnostic method based on the Gaussian mixture model (OWTGMM) of orthogonal wavelet transform is proposed, in which orthogonal wavelet transform (OWT) is used to extract each detailed fault signal, the signal peak-to-peak value eigenvector is used as the construction model, and the GMM is used for fault classification. Based on the classification result from the rolling bearings’ test data, the use of detail signals extracted through OWT as the training data of the Gaussian mixture model promotes fast classification of bearing faults. Compared with the GMM without the extraction of the characteristic values, this method can reliably distinguish the categories of bearing faults about 100% of the time, which is consistent with the service life test chart. Furthermore, the unknown fault data is subject to classification with the orthogonal wavelet Gaussian model, and the bearing fault data is well distinguished, with an overall recognition rate of over 95%.

Funder

Shaanxi Province Innovation Capacity Support Program

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multi-fault diagnosis method for rolling bearings;Signal, Image and Video Processing;2024-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3