Author:
Zhang Kai,Zhu Eryu,Zhang Yimin,Gao Shuzhi,Tang Meng,Huang Qiujun
Funder
Liaoning Provincial Department of Education Project
the National Natural Science Foundation of China
the Guangdong Basic and Applied Basic Re-search Foundation
the Youth Projects of Guangdong Education Department for Foundation Research and Ap-plied Research
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Aimer, A.F., Boudinar, A.H., Benouzza, N., Bendiabdellah, A.: Induction motor bearing faults diagnosis using Root-AR approach: simulation and experimental validation. Electr. Eng. 100(3), 1555–1564 (2018)
2. Amar, M., Gondal, I., Wilson, C.: Vibration spectrum imaging: a novel bearing fault classification approach. IEEE Trans. Industr. Electron. 62(1), 494–502 (2015)
3. Chen, B., et al.: Meas. Sci. Technol. 35, 066118 (2024)
4. Samanta, B., Al-balushi, K.R.: artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mech. Syst. Sig. Process. 17(2), 317–328 (2001)
5. Wang, C.J., Li, H.Y., Xiang, W., et al.: A new signal classification method based on EEMD and FCM and its application in bearing fault diagnosis. Appl. Mech. Mater. 3365(602–605), 1803–1806 (2014)