Condition-Based Monitoring on High-Precision Gearbox for Robotic Applications

Author:

Amin Al Hajj Mohamad1ORCID,Quaglia Giuseppe2ORCID,Schulz Ingo3ORCID

Affiliation:

1. Politecnico di Torino, Turin 10129, Italy

2. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin 10129, Italy

3. SKF GmbH, Schweinfurt 97421, Germany

Abstract

This work presents a theoretical and experimental study regarding defect detection in a robotic gearbox using vibration signals in both cyclostationary and noncyclostationary conditions. The existing work focuses on inferring the health of the robot during operation with little regard toward the defective element of the components. This article illustrates the detection of specific element damage of a robotic gearbox during a robotic cycle based on domain knowledge and presents a novel data-driven method for asset health. This starts by studying the robotic gearbox, specifically its kinematics as a planetary 2-stage reduction gearbox to acquire the knowledge of the rotations of each component. The signals acquired from a test bench with four sensors undergo different acquisition methods and signal processing techniques to correlate the elements’ frequencies. The work shows the detection of the artificially created defects from the acquired vibration data, verifying the kinematic methodology and identifying the root cause of failure of such gearboxes. A novel resampling method, Binning, is presented and compared with the traditional signal processing techniques. Binning combined with Principal Component Analysis (PCA) as a data-driven method to infer the state of the gearbox is presented, tested, and validated. This work presents methods as a step toward automatized predictive maintenance on robots in industrial applications.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3