Swin-YOLOv5: Research and Application of Fire and Smoke Detection Algorithm Based on YOLOv5

Author:

Zhang Shangjie Ge1,Zhang Fengxi2,Ding Yuyang3,Li Yu1ORCID

Affiliation:

1. College of Science, Northeast Forestry University, Harbin 150040, China

2. College of Telecommunications Engineering, Xidian University, Xi’an 710126, China

3. College of Foreign Languages, Northeast Forestry University, Harbin 150040, China

Abstract

Accurate monitoring of fire and smoke plays an irreplaceable role in preventing fires and safeguarding the safety of citizens' lives and property. The network structure of YOLOv5 is simple, but using convolution to extract features will lead to some problems such as limited receptive field, poor feature extraction ability, and insufficient feature integration. In view of the current defects of YOLOv5 target detection algorithm, a new algorithm model named Swin-YOLOv5 was proposed in this work. Swin transformation mechanism was introduced into YOLOv5 network, which enhanced the receptive field and feature extraction ability of the model without changing the depth of the model. In order to enrich the feature map splicing method of weighted Concat and enhance the feature fusion ability of model pairs, the feature splicing method of three output heads of feature fusion layer network was improved. The feature fusion module was further modified, and the weighted feature splicing method was introduced to improve the network feature fusion ability. Experimental results show that the map (average rage accuracy) of this method rises faster than the benchmark algorithm. Under the same experimental dataset, the map of this algorithm is improved by 0.7%, and the high-precision target detection speed is improved by 1.8 FPS (fast packet switch). Under the same experimental dataset, the improved algorithm could more accurately detect the targets that were not detected or detected inaccurately by the original algorithm, which embodied the adaptability of real scene detection and had practical significance. This work provided an opportunity for the application of fire-smoke detection in forest and indoor scenes and also developed a feasible idea for feature extraction and fusion of YOLOv5.

Funder

Innovation Training Project Program of Heilongjiang Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3