Impact of Data-Augmentation on Brain Tumor Detection Using Different YOLO Versions Models

Author:

Ishtaiwi Abdelraouf,Ali Ali,al-Qerem Ahmad,Alsmadi Yazan,Aldweesh Amjad,Alauthman Mohammad,Alzubi Omar,Nashwan Shadi,Abaker Awad,Alzgol Musab,Alangari Someah

Abstract

Brain tumors are widely recognized as one of the world's worst and most disabling diseases. Every year, thousands of people die as a result of brain tumors caused by the rapid growth of tumor cells. As a result, saving the lives of tens of thousands of people worldwide needs speedy investigation and automatic identification of brain tumors. In this paper, we propose a new methodology for detecting brain tumors. The designed framework assesses the application of cutting-edge YOLO models such as YOLO v3, YOLO v5n, YOLO v5s, YOLO v5m, YOLOv5l, YOLOv5x, and YOLOv7 with varying weights and data augmentation on a dataset of 7382 samples from three distinct MRI orientations, namely, axial, coronal, and sagittal. Several data augmentation techniques were also employed to minimize detector sensitivity while increasing detection accuracy. In addition, the Adam and SGD optimizers were compared. We aim to find the ideal network weight and MRI orientation for detecting brain cancers. The results show that with an IoU of 0.5, axial orientation had the highest detection accuracy with an average mAP of 97.33%. Furthermore, SGD surpasses Adam optimizer by more than 20% mAP. Also, it was found that YOLO 5n, YOLOv5s, YOLOv5x, and YOLOv3 surpass others by more than 95% mAP. Besides that, it was observed that the YOLOv5 and YOLOv3 models are more sensitive to data augmentation than the YOLOv7 model.

Publisher

Zarqa University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3