Mathematical Model and Numerical Simulation of Coalbed Methane Migration Considering the Adsorption Expansion Effect

Author:

Xie Jianlin1ORCID,Yang Shaoqiang1,Li Pengwei1

Affiliation:

1. Taiyuan University of Science and Technology College of Safety and Emergency Management Engineering Taiyuan, Shanxi 030024, China

Abstract

The influence of gas adsorption and desorption on the volumetric strain of coal was measured by a self-designed, fluid–solid coupling triaxial coal adsorption deformation experimental system. The experimental results show that coal deformation has a threshold value with an increase in gas content. Before the gas content reaches the threshold value, coal deformation is not obvious. When the gas content reaches the threshold value, the deformation will increase sharply. At the same time, coal volume strain changes with coal gas content in accordance with exponential law ε = ε0(eϒc-1). Based on the experimental results, considering the coupling effects of heat transfer, water seepage, coal and rock mass deformation, and coalbed methane desorption and seepage, a mathematical model of heat transfer–deformation–seepage coupling coalbed methane migration was established, and a numerical simulation study was carried out on the heat injection-enhanced coalbed methane mining project. The results show that (1) With continuous heat injection, the gas in the coal seam is rapidly desorbed, and the adsorbed gas content forms an elliptical funnel that extends from the extraction hole to the deep part of the coal body and takes the fracturing crack as the center to the upper and lower boundaries of the coal seam. At day 30, the adsorbed gas content in the whole drainage area has decreased to 0.1 m3/t within 2m from the fracture zone. (2) On the basis of considering the gas adsorption expansion effect, the strain of the coal body decreases from roof to floor. With the increase in the heat injection time, the strain value will also increase, and the strain increase will decrease. When the heat injection is 30 days, the maximum strain at the roof is 0.015. The research results have important guiding significance for predicting coal rock deformation and determining gas extraction efficiency in the process of heat injection-enhanced coalbed methane extraction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference25 articles.

1. A statistical analysis of geomechanical data and its effect on rock mass numerical modeling: a case study;P. Małkowski;International Journal of Coal Science & Technology,2020

2. Geochemistry, petrology, and palynology of the princess no. 3 coal, Greenup County, Kentucky;M. M. Hood;International Journal of Coal Science & Technology,2020

3. Key CO2 capture technology of pure oxygen exhaust gas combustion for syngas-fueled high-temperature fuel cells;H. Wang;International Journal of Coal Science & Technology,2021

4. Theoritcal analysis for coalbed methane transport in coal seam;S. N. Zhou;Journal of mining technology University of Beijing,1957

5. Mathematical model for coupled solid deformation and methane flow in coal seams

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3