Key CO2 capture technology of pure oxygen exhaust gas combustion for syngas-fueled high-temperature fuel cells

Author:

Wang Hanlin,Lei Qilong,Li Pingping,Liu Changlei,Xue Yunpeng,Zhang Xuewei,Li Chufu,Yang Zhibin

Abstract

AbstractIntegrated gasification fuel cells (IGFCs) integrating high-temperature solid oxide fuel cell technology with CO2 capture processes represents highly-efficient power systems with negligible CO2 emissions. Flame burning with pure oxygen is an ideal method for fuel cell exhaust gas treatment, and this report describes experimental and numerical studies regarding an oxy-combustor for treating the exhaust gas of a 10 kW IGFC system anode. The applied simulation method was verified based on experiments, and the key performance indices of the combustor were studied under various conditions. It was determined that 315 K was the ideal condensation temperature to obtain flame stability. Under these pure oxygen flame burning conditions, CO was almost completely converted, and the dry mole fraction of CO2 after burning was ≥ 0.958 when there was up to 5% excess O2. Overall, 5% excess O2 was recommended to maximize CO2 capture and promote other environmental considerations. Additionally, the optimal tangential fuel jet angle to control the liner temperature was approximately 25°. The total fuel utilization had to be high enough to maintain the oxygen flame temperature of the anode exhaust gas below 1800 K to ensure that the system was environmentally friendly. The results presented herein have great value for designing IGFCs coupled with CO2 capture systems.

Funder

the National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3