A Multiscale and High-Precision LSTM-GASVR Short-Term Traffic Flow Prediction Model

Author:

Zhou Jingmei1ORCID,Chang Hui2ORCID,Cheng Xin2ORCID,Zhao Xiangmo2ORCID

Affiliation:

1. School of Electronic and Control Engineering, Chang’an University, Xi’an 710064, China

2. School of Information Engineering, Chang’an University, Xi’an 710064, China

Abstract

Short-term traffic flow has the characteristics of complex, changeable, strong timeliness, and so on. So the traditional prediction algorithm is difficult to meet its high real-time and accuracy requirements. In this paper, a multiscale and high-precision LSTM-GASVR short-term traffic flow prediction algorithm is proposed. This method uses 15 min traffic flow data of the first 16 sections as input and completes the data preprocessing operation through reconstruction, normalization, and rising dimension by working day factor; establishing the prediction model based on the long- and short-term memory network (LSTM) and inverse normalization; and proposing the GA-SVR model to optimize the prediction results, so as to realize the real-time high-precision prediction of traffic flow. The prediction experiment is carried out according to the charge data of a toll station in Xi’an, Shaanxi Province, from May 2018 to May 2019. The comparison and analysis of various algorithms show that the prediction algorithm proposed in this paper is 20% higher than the LSTM, GRU, CNN, SAE, ARIMA, and SVR, and the R2 can reach 0.982, the explanatory variance is 0.982, and the MAPE is 0.118. The proposed traffic flow prediction algorithm provides strong support for traffic managers to judge the state of the road network to control traffic and guide traffic flow.

Funder

National Key Research and Development Program of China Stem Cell and Translational Research

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3