Onion (Allium cepa L.) and Drought: Current Situation and Perspectives

Author:

Sansan Oladé Charles1,Ezin Vincent1ORCID,Ayenan Mathieu Anatole Tele2,Chabi Ifagbémi Bienvenue3ORCID,Adoukonou-Sagbadja Hubert4,Saïdou Aliou1,Ahanchede Adam1ORCID

Affiliation:

1. Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin

2. World Vegetable Center, West and Central Africa Coastal and Humid Regions, IITA-Benin Campus, 08 BP 0932 Tri Postal, Cotonou, Benin

3. Laboratory of Human Nutrition and Valorization of Food Bio-ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 03 BP 2819, Benin

4. Laboratory of Genetic and Biotechnology, Faculty of Sciences and Technology, University of Abomey-Calavi, Cotonou BP 526, Benin

Abstract

Onions (Allium cepa L.) are the second most commonly produced and consumed vegetable worldwide due to their economic, nutritional, and medicinal benefits. However, drought hinders vegetative growth, lowers yields and bulb quality, reduces photosynthetic activity, and alters the onion plant’s metabolism. This review provides a summary of global research on the impact of drought on onions. It specifically seeks to shed light on aspects that remain unclear and generate research avenues. Relevant scientific articles were sourced from the AGORA database, Web of Science (WoS), and search engines such as Google Scholar, Scopus, MEDLINE/PubMed, and SCImago to achieve this objective. A total of 117 scientific articles and documents related to onion and drought were critically examined. The review revealed agromorphological, physiological, biochemical, and genomic studies depicting factors that contribute to drought tolerance in onion genotypes. However, there was little research on the physiological, biochemical, and genetic characteristics of drought tolerance in onions, which need to be deepened to establish its adaptation mechanisms. Understanding the mechanisms of onion response to water stress will contribute to fast-tracking the development of drought-tolerant genotypes and optimize onion production. Future research should be more focused on investigating onion drought tolerance mechanisms and structural and functional genomics and identifying genes responsible for onion drought tolerance.

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3