Toward an Efficient and Effective Credit Scorer for Cross-Border E-Commerce Enterprises

Author:

Xu Chang1ORCID,Guo Ruize1,Zhang Yulai1,Luo Xinyuan2

Affiliation:

1. School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China

2. School of Computer Science and Technology, Zhejiang University, Zhejiang, Hangzhou 310027, China

Abstract

Building an efficient and effective credit scorer for enterprises is an important and urgent demand in the cross-border e-commerce industry. In this paper, we present a framework to build a credit scorer using e-commerce data integrated from various sources. First, an improved dependency graph approach is proposed to recognize distinct records in the dataset. Then, we apply logistic regression using a prejudice remover regularizer to train the model, preceded by predictor preparation through binning and evaluating their information value. Lastly, we build the credit scorer according to the coefficients of the model. We implement our framework on a dataset from the official customs database and a large cross-border e-commerce platform. The empirical results demonstrate that the scorer built by our methodology can be used to effectively evaluate enterprises, while also removing prejudice against small and medium enterprises to a certain extent.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3