Parametric Vibration Analysis of a Six-Degree-of-Freedom Electro-Hydraulic Stewart Platform

Author:

Yuan Xiaoming1ORCID,Tang Yue1ORCID,Wang Weiqi1,Zhang Lijie1ORCID

Affiliation:

1. Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004, China

Abstract

Electro-hydraulic Stewart 6-DOF platform is a 6-DOF parallel mechanism combined with the electro-hydraulic servo control system, which is widely used in the field of construction machinery. In actual working conditions, the flow and pressure pulsation of the hydraulic oil output from the hydraulic leg of the electro-hydraulic Stewart platform are inevitable, so the equivalent stiffness of the platform leg will change, and the stiffness parameters of the transmission system will change, resulting in vibration, which will affect the accuracy of the platform. This paper considering the fluid unit equivalent stiffness cyclical fluctuations and leg, on the basis of the relationship between hydraulic stiffness, constructs the electric hydraulic Stewart platform machine vibration dynamics equation, fluid coupling parameters of vibration parameters using the method of the multiscale approximate analytic formula of the main resonance and combination resonance are derived, and the system parameters vibration time-domain response and frequency response under two different poses are discussed. Results show that the system first to six order natural frequency and the first to the sixth order natural frequency and frequency of hydraulic oil equivalent stiffness of the combination of frequency will have an effect on the parameters of the system vibration. In the main resonance, the dominant frequency is mainly the first to sixth order natural frequency of the system; in the combined resonance, the dominant frequency is the combined frequency. Through the parameter vibration analysis of two different positions of the platform, it is concluded that when the platform is in an asymmetric position, each leg of the system is more involved in vibration. This study can provide the reference for the subsequent dynamic optimization and reliability analysis of the electro-hydraulic Stewart platform.

Funder

National Key R&D Project

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3