Protective Effects and Mechanisms of Dendrobium nobile Lindl. Alkaloids on PC12 Cell Damage Induced by Aβ25-35

Author:

Liu Yuan1,Pi Tingting1ORCID,Yang Xiaohui1,Shi Jingshan1ORCID

Affiliation:

1. Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guhou Province, Zunyi Medical College, Zunyi, Guizhou Province, 563000, China

Abstract

Background. Aβ deposition abnormally in the mitochondria can damage the mitochondrial respiratory chain and activate the mitochondrial-mediated apoptosis pathway, resulting in AD-like symptoms. Objective. To observe the protective effects of Dendrobium nobile Lindl. alkaloids (DNLA) on Aβ25-35-induced oxidative stress and apoptosis in PC12 cells explore its possible protective mechanisms. Methods. PC12 cells were treated with DNLA with different concentrations (0.035 mg/L, 0.3 mg/L, and 3.5 mg/L) for 6 h, followed by administration with Aβ25-35 (10 μM) for 24 h. MTT assay and flow cytometer observe the effect of DNLA on Aβ25-35-induced cytotoxicity and apoptosis of PC12 cell. Based on the mitochondrial apoptosis pathway to study the antiapoptotic effect of DNLA on this model and its relationship with oxidative stress, flow cytometer detected the level of reactive oxygen species (ROS), and ELISA kits were used to detect superoxide dismutase activity (SOD) and glutathione (GSH) content in cells. The JC-1 fluorescent staining observed the effect of DNLA on the mitochondrial membrane potential (MMP) with inverted immunofluorescence microscopy. Western blot was used to detect the levels of mitochondrial apoptosis pathway-related protein and its major downstream proteins Bax, Bcl-2, cleaved-caspase-9, and cleaved-caspase-3. Results. DNLA can significantly improve the viability and apoptosis rate of PC12 cell damage induced by Aβ25-35. It also can restore the reduced intracellular ROS content and MMP, while SOD activity and GSH content increase significantly. The expression of apoptosis-related protein Bax, cleaved-caspase-9, and cleaved-caspase-3 decreased when the Bcl-2 protein expression was significantly increased. Conclusion. These findings suggest that it can significantly inhibit the apoptosis of PC12 cell damage induced by Aβ25-35. The mechanism may reduce the level of cellular oxidative stress and thus inhibit the mitochondrial-mediated apoptosis pathway.

Funder

Funds for the Construction of National First Class Pharmacy Discipline

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology,General Medicine,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3