Control of Bleeding in Endoscopic Skull Base Surgery: Current Concepts to Improve Hemostasis

Author:

Thongrong Cattleya12,Kasemsiri Pornthep34,Carrau Ricardo L.3ORCID,Bergese Sergio D.15ORCID

Affiliation:

1. Department of Anesthesiology, Wexner Medical Center at The Ohio State University, Columbus, OH, USA

2. Department of Anesthesiology, Srinagarind Hospital, Faculty of Medicine, 123 Mitraparp Highways, Khon Kaen University, Khon Kaen 40002, Thailand

3. Department of Otolaryngology, Head and Neck Surgery, Wexner Medical Center at The Ohio State University, Columbus, OH, USA

4. Department of Otorhinolaryngology, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand

5. Department of Neurological Surgery, Wexner Medical Center at The Ohio State University, Columbus, OH, USA

Abstract

Hemostasis is critical for adequate anatomical visualization during endoscopic endonasal skull base surgery. Reduction of intraoperative bleeding should be considered during the treatment planning and continued throughout the perioperative period. Preoperative preparations include the optimization of comorbidities and cessation of drugs that may inhibit coagulation. Intraoperative considerations comprise anesthetic and surgical aspects. Controlled hypotension is the main anesthetic technique to reduce bleeding; however, there is controversy regarding its effectiveness; what the appropriate mean arterial pressure is and how to maintain it. In extradural cases, we advocate a mean arterial pressure of 65–70 mm Hg to reduce bleeding while preventing ischemic complications. For dealing intradural lesion, controlled hypotension should be cautious. We do not advocate a marked blood pressure reduction, as this often affects the perfusion of neural structures. Further reduction could lead to stroke or loss of cranial nerve function. From the surgical perspective, there are novel technologies and techniques that reduce bleeding, thus, improving the visualization of the surgical field.

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3