III–V Nanowires: Synthesis, Property Manipulations, and Device Applications

Author:

Fang Ming1,Han Ning12,Wang Fengyun3ORCID,Yang Zai-xing1,Yip SenPo12,Dong Guofa1,Hou Jared J.12,Chueh Yulun4,Ho Johnny C.12

Affiliation:

1. Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

2. Shenzhen Research Institute, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

3. Cultivation Base for State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao, China

4. Department of Materials Science and Engineering, National Tsing Hua University, No. 101 Section 2 Kuang-Fu Road, Hsinchu 30013, Taiwan

Abstract

III–V semiconductor nanowire (NW) materials possess a combination of fascinating properties, including their tunable direct bandgap, high carrier mobility, excellent mechanical flexibility, and extraordinarily large surface-to-volume ratio, making them superior candidates for next generation electronics, photonics, and sensors, even possibly on flexible substrates. Understanding the synthesis, property manipulation, and device integration of these III–V NW materials is therefore crucial for their practical implementations. In this review, we present a comprehensive overview of the recent development in III–V NWs with the focus on their cost-effective synthesis, corresponding property control, and the relevant low-operating-power device applications. We will first introduce the synthesis methods and growth mechanisms of III–V NWs, emphasizing the low-cost solid-source chemical vapor deposition (SSCVD) technique, and then discuss the physical properties of III–V NWs with special attention on their dependences on several typical factors including the choice of catalysts, NW diameters, surface roughness, and surface decorations. After that, we present several different examples in the area of high-performance photovoltaics and low-power electronic circuit prototypes to further demonstrate the potential applications of these NW materials. Towards the end, we also make some remarks on the progress made and challenges remaining in the III–V NW research field.

Funder

City University of Hong Kong

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3