Characterization of the Biological Fingerprint and Identification of Associated Parameters in Stress Fractures by FTIR Spectroscopy

Author:

Mata-Miranda Monica Maribel1ORCID,Guerrero-Ruiz Melissa1,Gonzalez-Fuentes Juan Ramon2,Hernandez-Toscano Carlos Martin2,Garcia-Andino Jesus Rafael2,Sanchez-Brito Miguel3,Vazquez-Zapien Gustavo Jesus1ORCID

Affiliation:

1. Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Ciudad de México 11200, Mexico

2. Hospital Central Militar, Secretaría de la Defensa Nacional, Ciudad de México 11200, Mexico

3. Doctorado en Ciencias de la Ingeniería, Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico

Abstract

Introduction. The stress fractures (SFs) are a common condition in athletes and military recruits, characterized by partial fracture caused by repetitive applications of stresses that are lower than the stress required to fracture the bone in a single loading. Fourier transform infrared (FTIR) spectroscopy gives information about the bone composition and also can determine the amount of a molecule. For this reason, the FTIR spectroscopy may be used as a tool for diagnosis of certain bone diseases related to the bone strength. In this research, we established the contributions of mineral and collagen properties to SF risk through FTIR spectroscopy, analyzing the biochemical profile differences between the healthy bone and the bone with an SF. Materials and Methods. Previous written informed consent was obtained, and samples of the hip with an SF (n = 11) and healthy bone from the femur with traumatic fracture (n = 5) were obtained and analyzed employing FTIR spectroscopy and its biochemical mapping function. Then, using FTIR spectra and the map, the collagen content and ratios corresponding to matrix maturity, mineralization, carbonate substitution, acid phosphate substitution, and crystallinity were calculated. Moreover, a histopathological analysis through Masson’s staining was conducted. Results. The biochemical analysis showed that the bone with an SF presented a bone immaturity characterized by a higher content of collagen, lower matrix maturity, mineralization, carbonate and acid phosphate substitutions, and greater crystallinity compared to the healthy bone, being checked by the ratio analysis and biochemical mapping. Besides, Masson’s stain showed a higher collagen content in the bone with an SF. Conclusions. The bone with an SF presented alterations in its biochemical composition, showing bone immaturity, which broadens the panorama of the condition to investigate future treatments or prophylactic techniques.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3