Numerical Investigation on Vibration Performance of an Improved Switched Reluctance Machine with Double Auxiliary Slots

Author:

Gao Zhengyuan1,Wang Shanming1,An Zhiguo1ORCID,Sun Pengfei1ORCID

Affiliation:

1. School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

Considerable vibration and acoustic noise limit the further application of Switched Reluctance Machine (SRM) due to its structural characteristics and working principle. An improved SRM model with double auxiliary slots (DAS) was proposed, in which the direction of the magnetic line of force was adjusted, and the radial magnetic density in the air gap was reduced by changing the local tooth profiles of the stator and the rotor. The effects of initial rotor position and turn-on angle and turn-off angle on radial Electromagnetic Force (EMF) and maximum torque were investigated. The results indicate the radial EMF and torque increase significantly with the advancement of the turn-on angle or the delay of the turn-off angle. In the orthogonal experimental design, initial rotor position, turn-on angle, and turn-off angle were taken as the factors, and the optimal set of parameters that minimized radial EMF was determined according to a greater output torque. In contrast to conventional SRM, the radial EMF of the SRM with DAS significantly reduces when the optimal set is applied.

Funder

Chongqing Science and Technology Bureau

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3