Affiliation:
1. Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
Abstract
The issue of aeroengine oscillations over high-attitude and low-speed flight envelope has been an unsolved problem due to their classified nature and hard reproduction in simulated altitude test stand. Efforts have been sought for either structural integrity or component damage. However, it is rarely realized that the oscillations can be an inherent property of the engine itself. Consequently, a dynamical system approach is proposed in this paper to demonstrate that engine oscillations are recurring over high-attitude and low-speed flight envelope, yet they can be suppressed through appropriate control designs. However, the resulting design can be compromised with the conventional high-gain control where the transient and steady-state performance must be balanced with disturbance attenuation performance. Examples are given to illustrate and validate the claims made through the en route analysis.
Funder
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献