A New Iterative Method for the Approximate Solution of Klein-Gordon and Sine-Gordon Equations

Author:

Fang Jiahua1ORCID,Nadeem Muhammad2ORCID,Habib Mustafa3ORCID,Karim Shazia4ORCID,Wahash Hanan A.5ORCID

Affiliation:

1. Yibin University, Yibin 644000, China

2. Faculty of Science, Yibin University, Yibin 644000, China

3. Department of Mathematics, University of Engineering and Technology, Lahore 54890, Pakistan

4. Department of Basic Sciences, UET Lahore, FSD Campus 54800, Pakistan

5. Department of Mathematics, Albaydaa University, Yemen

Abstract

This article presents a new iterative method (NIM) for the investigation of the approximate solution of the Klein-Gordon and sine-Gordon equations. This approach is formulated on the combination of the Mohand transform and the homotopy perturbation method. Mohand transform (MT) is capable to handle the linear terms only, thus we introduce homotopy perturbation method (HPM) to tackle the nonlinear terms. This NIM derives the results in the form of a series solution. The proposed method emphasizes the stability of the derived solutions without any linearization, discretization, or hypothesis. Graphical representation and absolute error demonstrate the efficiency and authenticity of this scheme. Some numerical models are illustrated to show the compactness and reliability of this strategy.

Publisher

Hindawi Limited

Subject

Analysis

Reference36 articles.

1. TEMPERATURE-DEPENDENT PHYSICAL CHARACTERISTICS OF THE ROTATING NONLOCAL NANOBEAMS SUBJECT TO A VARYING HEAT SOURCE AND A DYNAMIC LOAD

2. A comparative study of Mohand and Laplace transforms;S. Aggarwal;Journal of Emerging Technologies and Innovative Research,2019

3. Exact solution of nonlinear Klein-Gordon equations with quadratic nonlinearity by modified adomian decomposition method;E. U. Agom;The Journal of Mathematics and Computer Science,2018

4. Exact solutions to the foam drainage equation by using the new generalized(G′/G)-expansion method

5. Approximate Analytic–Numeric Fuzzy Solutions of Fuzzy Fractional Equations Using a Residual Power Series Approach

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3