TEMPERATURE-DEPENDENT PHYSICAL CHARACTERISTICS OF THE ROTATING NONLOCAL NANOBEAMS SUBJECT TO A VARYING HEAT SOURCE AND A DYNAMIC LOAD

Author:

Abouelregal Ahmed E.,Mohammad-Sedighi Hamid,Faghidian Seyed Ali,Shirazi Ali Heidari

Abstract

In this article, the influence of thermal conductivity on the dynamics of a rotating nanobeam is established in the context of nonlocal thermoelasticity theory. To this end, the governing equations are derived using generalized heat conduction including phase lags on the basis of the Euler–Bernoulli beam theory. The thermal conductivity of the proposed model linearly changes with temperature and the considered nanobeam is excited with a variable harmonic heat source and exposed to a time-dependent load with exponential decay. The analytic solutions for bending moment, deflection and temperature of rotating nonlocal nanobeams are achieved by means of the Laplace transform procedure. A qualitative study is conducted to justify the soundness of the present analysis while the impact of nonlocal parameter and varying heat source are discussed in detail. It also shows the way in which the variations of physical properties due to temperature changes affect the static and dynamic behavior of rotating nanobeams. It is found that the physical fields strongly depend on the nonlocal parameter, the change of the thermal conductivity, rotation speed and the mechanical loads and, therefore, it is not possible to neglect their effects on the manufacturing process of precise/intelligent machines and devices.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3